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Three dimensional Dirichlet problems for Au = F(u) ,

P“ 20, are treated numerically by an exceptionally fast,
exceptionally acourate numerical method. Programming de-
tails, numerous examples, and mathematical theory are supplied.
Extension of the method in a natural way to n=dimensional

’ problems is indicated by means of a 4~dimensional example.
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ON THE APPROXIMATE SOLUTION OF Au = F(u)

D. Greenspan and M. Yohe

l. Introduction. Because of its importance in such fields as potential theory,
automorphic functions, and electron radiation [1]-[5], this paper will be concerned
primarily with Dirichlet problems in three dimensions. It will be assumed that
the problems need not be reducible to ones in two dimensions so that special
assumptions, like axial symmetry, will be precluded.

Precisely, we will consider:
Problem D. Let G be a three dimensional closed, bounded, simply connected
(contractible) domain in E3 whose interior is R and whose boundary is S .

For all real u, let F{u) be defined and differentiable and let

(1.1) F >0 .

Then if §(x, y,z) ¢ C(S), find a function u(x,y, z) which is a solution on R

of

2 2 2

9 u 9 u 8 u
(1.2) St Tyt = F(u)

ax 9y 9z
and which satisfies both
(1.3) u=¢, (x,y,z)esS

(1. 4) ue C(G) .

Sponsored by the Mathematics Research Center, L.ited States Army, Madison,
Wisconsin under Contract No.: DA-11-022-ORD-2059,
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Under quite general assumptions on 8, such as possession of the cone
property [1, p. 233], it is known that Problem D has a unique solution [1, p. 372),
and it is only with such problems that we shall be concerned. But since it is
not known, in general, how to give this solution in closed form, attention will
be directed toward approximating it. A finite difference, digital computer
technique which has proved exceptionally fast and exceptionally accurate will
be described and both mathematical and experimental support for the method
will be prot .ve .

Extension of the method in a natural way to any number of dimensions will
be indicated by means of a four-dimensional example {(a two dimensional example

already having been given elsewhere [6]).
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2. The Numerjcal Method. Let (X, y,z) be an arbitrary point of G and let
h be a positive constant. The set of points (X + ph, y+ qh, z +rh) ;

p=0, #1, %2, ...; q=0, €], %2,,,.; r=0, &i, 2, ,,,, is called a set
of grid points. Two grid points are said to be adjacent if their distance apart
is h . The set of all lines, each one of which contains at least one pair of
adjacent grid points, is called a lattice. Denote by Gh those points which
are ejther grid points in G or are points of intersection of S and the lattice.
If (x,y,2) e[S nGh], then (x,y, z) is called a boundary lattice point and
the set of all boundary lattice points is denoted by Sh . The set of all points
of G, which are not elements of S

h h
and is denoted by R

is called the set of interior lattice points
h L ]

If Gh consists of n points, we shall number these in a one~to-one
fashion with the positive integers 1, 2, ..., n and if (x,y, z) ¢ Gh and has

been numbered t , then u(x,y, 2) will be denoted by u, .

Method D. At each point (x, y, 2) ¢ Sh’ u(x, y, 2) =¢(x, v, z} so that the
exact solution is known. At each point (x,y, 2) ¢ Rh, let (x+ hl’ y,2) ,
(x-hz, Y, 2z}, (x, y+h3, z), (x, y-h4,z), (x, v, z+h5), (x, v, z-h6) be those
points of Gh which are nearest to (x,y, z) in the positive and negative x,y
and z directions, respectively (consult Diagram 2.1). Of course 0 < l'x1 <h ,
i=1,2, ..., 6 . If then (x, y, 2z), (x+hl, Y, z), (x-hz, Y, 2), (x,y+h3, z) ,
(x, y-h,, z), (x,vy, z+h9, (x, vy, z-h6) are numbered 0-6, respectively,

then write down the difference equation
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1 ) 1 1 1 |
(2.1) (- - - Ju, ¢ u, ¢+ u,+ u,+ u
hh, “hh, “hghlT0 hy(hy#h,) 1 h(h th,) "2 " h (b ¢h) "37h An,th) 4

I Fu,}
*ahan) s th (hah) Ve " zo
P o\t

u Rh consists of m points, application of (2.1) exactly once at each point of

Rh ylelds a system of m algebraic equations in, 83y, Uj, Uy, ceey U, the

solution of which, say, Ul’ Uz, csey Um’ constitutes the numerical solution.

The final step then is to solve this algebraic system.

-S.x:f."!’!.'.f). . (xo708)4,” (x+h,,7,8)

Diagram 2.1

- I
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3. Ma a) Ba

The derivation of (2.1) is a straight forward generalization of that given for
the two dimensional analogue [6].

In the important case when F=0, the algebraic system generated in Method D
is linear and, by means of the elementary techniques of [6]~[9], it is easily shown
that the algebraic solution vector exists and is unique, that linear over-relaxation
converges, and that the numerical solution converges to the analytical solution
in a suitable class of functions. The general case, when F need not be identically
zero and the algebraic system need not be linear, can be supported in a fashion
completély analogous to that of Bers [10] . But though existence and uniqueness
of the solution of the algebraic system do follow and convergence of the numerical
to the analytical solution for solutions of class CZ(G) can be established, one
can rely at all times only on the extended Liebmann method for solving the
nonlinear algebraic system. As yet, no general theoretjcal basis has been

developed to support nonlinear overrelaxation.
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4. Programming Method D. In this section we give programming details for
running Method D with F=0 . Only minor, natural modifications are necessary
to extend the program to the case F# 0 and to n-dimensional problems.

The program will require the following information:

(a) the mesh size h . (h may be different for the x, y, and 2
directiors if desired; we will assume, however, that the same h
is to be used for all directions).

(b) the base point, (x,y,z), chosen so that, for all points
(x,v,2) ¢ G, x<x, y<y, and z<z .

(c) integers Lx, Ly, and Lz such that the point
(X,¥,2) = (x+ (Lx-1)h, ¥ + (Ly-1)h, 2 + (Lz-1}h) satisfies the
condition x < X, y <y, 2< Zz for all points (x,y,2) ¢ G .

(d) the 6 functions Bl’ defined for all points of the form

(x+nxh, y+nyh, z+nzh), 0§_nx< L., 0<_ny< Ly, 0<_nz<Lz .

If a point (x,y,2z) isin G, then Bi(x,y, z) gives the distance
from (x,y, z) to S along the ray passing through point i (see
Diagram 2.1). If (x,y, 2z){ G, Bl(x, Y, 2) must be negative for at
least one 1 .

(e) the boundary value function $(x, v, 2)

'(f) the 7 formulas for the coefficients of Ugs Upy Uy, Uy, Uy, u, in
the difference equation (2. 1).

(g) the over-relaxation factor, w .

(h) the convergence criterion, ¢ .
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The program will analyze this information, calculate the coefficients of the
difference equations and set up an efficient procedure for the iterative solution
of the system of difference equations. The program will then perform the iteration,
and, finally, print the results.
Before discussing the particulars of the program, an example is in order.
For the solution of Example 1, section 5, the following information was supplied:
(a) h=0.1
(b} (x,y,2)=(0,0,0)

(¢) Ly=L =L, =l

X
,’ 2 2 >
(d) Bl = Sgn(ex) Iexl - X, where Ox = 1—(y +z ); sgx‘ex) - +1 if ax._o
-1if 6 <0
X
BZ =X

B3 = sgn (ey) 'Jleyl -y, where ey = I-sz +zz)

i

B4=y
2
B = sgn (e,) Vlo | -z, where 8_ = 1-(x" +y°)
z z z
86=z

2 2
(e) o(x,y,2) =% +2y -2z
(f) the 7 formulas as given in equation (2.1)
(g) W= lo 8

(h) ¢ =107
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Although the method in no way depends on the computer being used to solve
the problem (as long as enough high speed storage is available) or on the
programming language, we will assume for the sake of clarity that the programming
will be done in FORTRAN II for the Control Data Corporation model 1604 computer.

The item of major concern to us is the manner in which arrays are stored in
the computer's memory. If we are given a 3-dimensional array A of dimension
m XnXp, we will give the FORTRAN program a DIMENSION statement as
follows:

DIMENSION A(M, N, P)

where, of course, the actual integers involved must be specified. If we want

to reference a specific element of A, say a we use the following formula:

ijk?

g=i+me(j=1+ n.({k=1)) ;

we reference a ik by referring to the storage location A+ q . The number q ,

calculated as above, will be called the INDEX of the point a in the array A .

ijk
(we note that q is uniquely determined by the subscripts i, j, and k) .
Memory must be allocated for storage of the following data:
(a) two arrays of dimencion L, X Ly X Lz » one of which will be used to store
the solution vector, and the other of which will be used to control the
iteration procedure.

(b) the coordinate vectors Vx’ Vy, and Vz

(c) seven arrays, one for each coefficient of the difference equation (2.1) .

e e

s

ot £ 6.
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Coefficients will be stored in sets; that is, the set consisting of the
ith element from each of the seven coefficient vectors will comprise
the coefficients of one differernice equaiion. Duplicate sets will be
stored only once, and several distinct equations may well use the same
coefficient set. The number of sets depends on the problem; it is
suggested that the program be given an upper limit and that a check be
made to see that this limit is not exceeded. It is advisable to point
out the number of sets actually computed by the program; this gives a
basis for estimation for future problems as well as providing a check on
the problem being solved.

The program starts with the values X, y, and z, and generates the
coordinate vectors. It then examines each point of the form (x+ nxh ,§+ nyh, z+ nzh)
to determine whether it is in the region R . (The functions B1 are used to make
this determination). If the point is in R, the coefficients of the corresponding
difference equation are computed, the solution vector entry is initialized, and
the appropriate control information is computed and stored. If the point is not
in the region R, the solution vector entry is set to 1.0, and the control entry
is made negative,

After this analysis is complete, we have in storage the following information:

(a) The "solution vector" array U . The entries u, ik are initialized to

zero if a difference equation is to be solved for the corresponding point;

otherwise uUk mgst contain 1,0 .
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(b) The control array KON . This array is the heart of the computational
procedure. KON ik is negative if no difference equation is to be
solved for the corresponding point. If a difference equation is to be

solved for the corresponding point, then KON contains two items

ijk
of information: the lower half of the memory cell contains an integer
which specifies the index ] of the NEXT point at which a difference
equation is to be solved; the upper half of the memory cell contains
the integer J which specifies the coefficient set to be used in solving
the NEXT difference equation. If the point in question is the last point,
the entry is zero. The information for the first point is stored in KON{0)
(c) The coefficient vectors; these vectors contain the coefficient sets to be
used in computing the solution at the various points. This technique
of keeping only the unique coefficient sets, suggested by D. Van Egeren,
effects a considerable saving in high speed storage requirements, and
can be applied whenever two integers can be stored in each element of
the control array.
The iteration is now carried out as follows: KON(0) supplies the index I
of the first part to be considered and the number ] of the coefficient set to be

used. We then compute U(I) as follows:
u(I) = u() +w{-U(I) + [01(1) * U(I+k ) + C2(J) * U(I=k ) + CJ) » U(1+k,)

+ C4(J) * U(I-k,) + C5(1) * U(+k ) + G6{]) * U{Ik ,) ]/co(n} :

We record the "error" term, which is all of the right hand side of the equation except

the U(I) term.
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When this calculation is completed, we pick up KON(I) which gives us the
next values of I and J . When KON(I) is zero, this iteration is complete,
and we check for convergence and repeat the entire iteration procedure if
necessary.

The entire programming procedure is shown in detail in the attached block
diagram (Diagram 4.1). The diagram should be self-explanatory, but notes are
appended in certain places to aid in tracing the program steps.

In order to abbreviate the diagram, we will use the following conventions:

Symbol "i* will indicate that the procedure is to be carried out in each of
the six directions., That is, the statement "Compute Bl" means compute B

l,

B,,B,,B

22 B3y By, Bs, and 86 for the given values of x, y, and z .



]2~

L « Indon of WL I, K}
Compute
8,1VaL1), VLD, VLR

ROM{L) » -2
ik sk O

N, M, n
Cempute C,

NeNel 3
CXLINTA

MC o N

MC - RONX{U. A} | I/
RON{ M} « ROMNX
ML

Y,

T e )

{U.A )} » Upper Addinee
(LA} = Lower Address

U o test 1a made for tee many
ocostficlom sets, It should be
made here,

The formula fer DELU 10

DELU = OMEQM(C I{)outlel) ¢
CUNSULL-D) ¢ CHIIOU(T LX)+
CHNIOUI - LX) ¢ CHJ)oU(1 ¢ LXoLY)

* CH{ NYPULl - LXOLY) « UL,

This will undoubtedly need to be
fo-written to fit the Fortren system.

PRINT VX(1) y
win, K,
UL 1,8

&/ This is the place to test for
divergence or for operator
interrupt by means of a
oonsole switch.

5/ Prist in & suntedle tormat,
Tt may be desired to prim
the number of poims compuied,
100,

#384



#384 =]13=

5. Examples. To support our contention that Method D is superior, from the
point of view of both speed and accuracy, to any other method, whether discrete
or continuous, typical numerical evidence will now be presented by means of
several examples. Each example was run on the CDC 1604 at the University

of Wisconsin.

Example 1. Let G be the spherical sector in the first octant bounded by the
surfaces whose equations are x =0, y=0, 2=0, x2 + yz + zz =] , Let

F=0, (X,y,2)=(0,0,0), h=.land ¢= ioy-2t . R, contains 410
points. Using overrelaxation with a zero initial vector, Method D yielded results
correct to at least nine decimal places to the exact solution u = xz+ Zy-zz .

The running time was 1 minute 50 seconds.

Example 2. Example 1 was modified by setting ¢ = x3y-xy3- 5z . Selected, but
typical, results are recorded under u( 1) in Table 1. The running time was 1 minute

53 seconds and the exact solution was u = x3y - xy3 -5 .,

Example 3. Example 2 was modified by refining the grid to h=,05 . Rh contained
3721 points. Selected, but typical, results are recorded under u(z) in Table 1.

The running time was 8 minutes 1l seconds.

Example 4, Let G be the spherical sector in Example 1. Let F = e" (see [5]) ,
(X, ¥, 2)=(0,0,0), h=.1 and ¢ =x+2y +2° . R, contains 410 points,
Method D was applied with nonlinear overrelaxation [14] and with zero initial
vector. The running time was 2 minutes 33 seconds. Selected, but typical,

results are recorded under u(l) of Table 2.
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Example 5. An extended Liebman method [10] was applied in Example 4 in place
of nonlinear overrelaxation. Newton's method was applied to solve each

equation. The running time was 4 minutes 20 seconds. The results agreed with
those of Example 4 to at least eight decimal places. (With regard to this example,
one should also consult [15].)

Example 6. Let G be the four dimensional spherical sector deiined by

G = {(x,y,2,w); x20,y20,2>0, w20, xz+yz+zz+wz <_1} . Let

F=0, (X,¥,2,8)=(0, 0,0, 0), h=.1 and ¢= x°~2y° 432 -20° . R contained
803 points. The difference analogue of the four dimensional Laplace equation,
that is, the extension of (2.1) to four dimensions can be written for this problem

in the form

(5.1) 24 m -u?‘ +r (:2¥'1+h T+ (huz | = -
TS 0 i Y00 e TR TU5 e 118 Wity TUB ¥\ YOO i 11

Using overrelaxation with initial vector the zero vector, Method D approximated
the exact solution u = xz - 2y2+ 32z - sz at each point to at least nine decimal

places. The running time was 3 minutes 58 seconds.

Example 7. In this example we will show how Method D can be applied even
when G is not simply connected. Let Sl be the "outer” ~ubic surface with

vertices (0,0, 0), (2, 0, 0), (0, 2, 0), (0,0, 2), (2,2,0), (2,0 2), (0, 2, 2),

111

(2,2,2) and let S, be the "inner" cubic surface with vertices 33 (%,-12-,13 )

3
2

[\ Lond
N jw

131, 1L 31 3 3 3 33
(z) ’Z)’ (z: Z’E)’(E’ Z’-Z-)’(-Z-’E’-Z-)’(E’E’ )’('z" ’z)’ as shown in Diagram & 1.
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Let R be the region between s1 and Sz . Let §=8 usz and G=RWVS .,

1

Also, it is given that ¢é=1]1 on S,, é=0 on SZ’ and F=0 ., Then, setting

1’
(:-c, Y, 2) =(0,0,0) and h =.l, Method D was applied to the resulting Dirichlet
problem, Rh contained 784 points. The symmetry of the solution was incorporated
into the program so that only one eighth of G had to be considered. Over-
relaxation was applied with initial vector the zero vector and selected, but typical ’

results are recorded under u(l) of Table 3, The running time was 2 minutes

26 seconds.

Example 8. Example 7 was modified by refining the grid to h =,05 , Rh contained
6669 points. Selected, but typical, results are recorded under u(z) in Table 3.

The running time was 12 minutes 49 seconds.
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TABLE 1

Approx. Sol.: Approx. Sol.: Exact Sol.:
x y z u(l) u(z) u=x3y-xy3+5z
ol o1 .1 -0, 50000000 -0. 50000000 -, 50000000
.1 o1 o7 -3.50000000 -3.50000000 -3. 50000000
. 1 .2 o2 -1,00059993 -1, 00060000 -1, 00060000
.1 .3 o1 -0.50239984 -0.50239998 -0. 50240000
.1 .3 .6 -3,00239930 -3,00239992 -3.00240000
o1 . o2 -1.00599922 -1.00599990 -1.00600000
.1 .4 .8 -4,00599842 -4,00599974 -4,00600000
o1 . .2 -1,02099693 -1,02099962 -1.02100000
.1 .1 o1 -0.53359660 ~0.53359961 -0.53360000
.1 o1 o7 -3.53361012 -3.53360023 ~3. 53360000
.1 .8 .4 -2,05039221 ~2,05039855 -2,05040000
.2 o1 . -0, 49940004 -0,49940000 -0.49940000
.2 .1 .6 -2,99940018 ~2.99940002 =2.99940000
2 o2 o1 -0, 50000000 -0. 50000000 -0, 50000000
Iy .2 .6 -3.00000000 -3,00000000 -3,00000000
.2 .3 o1 -0.50299980 ~0.50299997 -0. 50300000
.2 .4 .1 -0.50959933 -0.50959992 -0. 50960000
.2 .4 .6 -3.00959709 -3. 009759968 -3,00960000
.2 .5 «5 -2.52099448 -2,520999 3;7 -2.52100000
.2 .6 .2 -1,03839447 ~-1.03839930 -1,03840000
.2 .6 .6 -3.03838782 -3.03839868 -3.03840000
.2 o7 .6 -3.06297700 -3,06299759 -3.06300000
.3 .1 . 1 ~0,49760016 -0.49760002 =-0.49760000
o3 .1 .6 -2.99760070 -2.99760008 -2.99760000
o3 .2 .1 -0,49700020 -0.49700002 -0.49700000
.3 .2 .6 -2,99700092 -2.99700010 =2,99700000
.3 .3 ol ~0. 50000000 -0. 50000000 -0. 50000000




-18~ #384
TABLE 1 (Continued)
Approx, Sol.: Approx. Sol.: Exact Sol.:

x Y z e £2) usx3y-xy 352

.3 .3 .9 -4, 50000000 ~4. 50000000 ~4. 50000000
.3 o4 .8 -4,00839981 ~4, 00839951 ~4, 00840000
.3 .5 .6 -3,02399285 =3.02399923 ~3.02400000
.3 .6 .4 -2,04858917 ~2.0485)867 ~2.04860000
.3 .7 .3 -1.58398473 ~1.58399789 ~1. 58400000
.3 .8 o2 -1.13198012 ~1.13199693 ~-1. 13200000
.3 ) .2 -1.19437299 ~1. 19439290 ~1. 19440000
.4 . 1 .4 -1.99400130 ~1.994000 16 ~1.99400000
.4 o1 .8 -3.99400158 ~3.99400026 ~3.99400000
.4 .2 .8 =3.99040373 ~3.99040039 ~3.99040000
.4 3 e5 -2.49160217 ~2.49160024 ~2.49160000
.4 4 .1 =0, 50000000 ~0. 50000000 ~0. 50000000
.4 o5 .2 -1.01799753 ~1. 01799967 ~1.01800000
.4 .6 .4 -2,04798864 ~2.04799869 ~-2.04800000
.4 o7 .3 -1.59238087 ~-1.59239767 ~1.59240000
.4 .8 .4 -2, 15360595 -2. 15359356 ~2. 15360000
«5 o1 o7 -3.48800346 ~3.48800042 ~3.48800000
.5 .2 «5 -2,47900552 ~2, 47900062 ~2. 47900000
.5 .3 .3 -1.47600437 -1. 47600055 -1.47609000
.5 .4 .3 ~-1,48200338 -1, 48200042 ~-1.48200000
.5 «5 .1 =0, 50000000 -0, 50000000 -0, 50000000
.5 5 7 -3.50000000 -3.50000000 =3.50000000
.5 o7 .2 ~-1.08398798 -1.08399811 -1.08400000
.6 .1 o2 =0.97900307 ~0.97900037 ~0.97900000
.6 o1 .6 ~2.97900485 ~2.97900064 ~2.97900000
.6 .2 o4 ~1.96160854 -1.96 160104 =-1.96 160000
.6 .3 o2 ~0.95140680 =0.95140090 -0.95140000




TABLE 1 (Continued)

Approx. Sol.:

Approx. Sol,:

Exact Sol.:

z um u(z) u=x3y-xy3+.'az
.6 .6 -2.9514142! -2.95140156 -2.95140000
.6 »5 =-2,45201490 -2,45200137 -2, 45200000
.6 ¢5 -2.46700303 -2.46700050 -2,46700000
.6 .4 -2,00000000 -2, 00000000 -2,00000000
o7 .4 ~1.96640694 -1.96640094 -1.96640000
o7 «3 - 1. 43701210 -1,43700156 -1,43700000
.7 .2 -0.91601231 -0.91600171 -0.91600000
o7 .1 -0, 40760854 -0.40760124 ~0. 40760000
o7 .5 -2,40764318 -2.407603 1‘2 -2.40760000
.7 «5 ~-2.41599728 -2.41599952 -2.41600000
o7 ol -0. 50000000 -0, 50000000 ~0. 50000000
.8 o1 ~-0. 40401347 =-0.40400 140 -0.40400000
.8 4 ~-1.86803535 -1.86800377 -1.86800000
.8 . 1 -0. 34404041 -0. 34100209 -0. 34400000
.9 .4 -1.92799112 -1,92800167 -1.92800000
.9 .1 -0.26598085 -0,26599834 -0.26600000
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TABLE 2

x Y z um x b4 z u(l)

ol o1 o1 + 33379803 o4 .1 .3 « 77843093
ol 2 o4 . 73417575 4 .2 .l . 88700006
ol 3 «5 1. 04443022 4 .3 .3 1.28020294
ol 4 3 1.08918215 o4 .3 o7 1.61368477
.1 «5 .2 1.23012008 o4 .4 4 1. 58080909
.l .6 .4 1. 570008 16 .4 5 o7 1.95821289
.1 o7 .4 1.75731038 o4 .6 3 1.89 143826
o1 .8 o2 1.81786813 4 o7 .5 2, 12651462
.1 9 .4 2,06963333 .4 .8 o2 2. 13369786
2 o1 .5 . 72353422 .5 .l .4 95402334
.2 o2 .3 .80203491 .5 .2 «3 1. 14019526
o2 2 .9 1, 44682719 o5 «3 .2 1.29857485
. 2 .3 .9 1,63582348 ] .4 .4 1. 66722297
.2 .4 .8 1,71152454 «5 «5 o7 1,99755020
.2 5 .8 1.87751902 +5 o7 .2 2.06195601
2 o7 .l 1. 70257965 o6 .l .3 . 97486870
.2 .8 o1 1, 88993511 .6 o2 .6 1. 45675948
3 ol .1 + 55309066 .6 o4 .3 1.66927338
.3 .1 .6 . 94374260 .6 o5 o6 1.98270586
.3 o2 o7 1. 30608 156 .6 7 .3 2.13505733
o3 .3 «5 1. 33513052 o ol o7 1. 39334550
K] .4 .4 1. 47053424 .7 4 .2 1.59571747
.3 .5 .2 1,516 16497 .1 o5 .3 1.89236582
] .6 o3 1.79105773 .8 el .2 1.09268284
«3 .6 o4 1.85851258 .8 o2 «5 1.48122715
.3 o7 4 2,01526321 .8 4 .3 1.75110486
.3 .9 o1 2.14891247 .9 o1 .3 1.21296598
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TABLE 3
x y z ) o2
1.0 1.0 1.6 .21318413 . 21340617
1.0 1.4 1.6 . 25474801 . 26000151
1.0 1.6 L3 . 23039266 23203625
1.0 1.8 1.9 93922824 . 94029832
1.0 1.9 1.6 . 87962760 . 88193903
1.1 1.5 1.7 . 52860578 . 53955766
.1 1.6 1.6 . 46730212 . 47796716
1.1 1.8 1.5 .70210223 .708 15556
.1 1.9 1.0 .81346190 . 81395052
1.2 11 1.9 .81812623 . 81902279
1.2 1.6 L1 . 22076057 . 22147398
1.2 1.7 L1 . 43191770 . 43329169
1.2 1.8 L1 .63036172 63180745
1.2 1.9 1.7 .91165183 .91351895
1.3 1.5 1.7 . 54872314 « 56194398
1.3 1.7 1.5 . 54872314 .56 194398
1.3 1.8 1.2 . 64900339 . 65215013
1.4 1.0 1.7 . 47342317 . 47933409
1.4 1.2 1.8 . 67122668 67620583
l.4 1.6 l.4 . 29590727 . 307046 19
1.4 1,8 1.9 94863874 95008233
1.5 1.2 1.6 . 31897168 . 33873950
1.5 1.6 1.5 . 41057277 . 45137840
1.5 1.8 l.4 . 73764103 . 74655664
1.5 1.9 1.6 90921585 91255196
1.6 L1 1.8 . 75512719 . 76003480
1.6 1.2 1.9 . 883187 14 . 88577147
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TABLE 3 (Continued)

x Y z O £2)
1.6 1.5 1.6 + 56670759 . 58864922
1.6 1.7 1.6 « 75991236 . 76967969
l.6 1.9 1.3 . 88834726 « 89126535
1.7 1.0 1.0 . 42086795 .42134851
1.7 1.2 1.0 . 42989416 43111151
1.7 1.4 1.3 .496 16024 . 50444129
1.7 1.6 1.5 . 70081037 . 71379555
1.7 1.8 1.5 . 86041861 . 86533931
1.8 1,1 1.3 . 64295832 64555233
1.8 1.2 1.7 . 8202 1476 « 82397741
1.8 1.4 1.4 .70371313 . 71143949
1.8 1.6 1.7 . 88560303 .88971671
1.8 1.9 1.3 94416441 . 94549284
1.9 1.0 1.4 . 83606017 . 83822357
1.9 1.3 1.1 .+82513613 . 82661512
1.9 1.3 1.7 . 91578506 .91787661
1.9 1.5 1.7 + 93179483 « 93410454
1.9 1.7 1.0 . 90873890 .91041024
1.9 1.9 1.0 « 96974268 . 97026699
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